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ADDENDUM

More on effective potentials of quantum strip waveguides

lain J Clark

Department of Mathematics and Statistics, The University of Edinburgh, James Clerk Maxwell
Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

Received 30 October 1997

Abstract. We investigate further the dynamics of a particle constrained to move on a curved
quantum strip waveguide embedded in 3-space, subject to Dirichlet boundary conditions. An
earlier calculation of the dependence of the effective potential upon torsion and twisting is
modified to yield a corrected expression, by use of the ‘straightening-out’ transformation.

In [1], an expression was derived for the effective potential of a quantum strip waveguide,
embedded with twisting and torsion in 3-space:

=
M*
where g, is constrained to assume values either (c1) between Odarmt (c2) between
—d/2 andd/2. However, it was pointed out that (1) could not be correct as it stands: for
example, when (¢q1) andé’(¢1) vanish, one has different values vf; for waveguides with
different orientation® (¢1) in the limit asd — 0. Physically, however, one would expect

these values o¥. to coincide. It was subsequently found [2] that the correct expression
for (1) was given by

1 1
Vett(q1, q2) ~ < - Z[K(Ch) cosp (g1 + E[T(C]l) - 9'(611)]2> (1)

-
M*
This addendum provides a derivation of this result.

Consider a strig2 of uniform widthd embedded with torsion in 3-space. As in [1], we
define a right-handed orthonormal tridétlq1), n(q1), b(¢1)} of vectors along a reference
curveC = {r(q1) : q1 € R}. We then take linear combinations af and b, the relative
proportions given at each point aloggby a scalar functior®(¢;), obtaining new vectors
n(g1) andns(gy). This allows the construction of a surfaSecontaining€2; the points in
the surfaceS are given by

S5(q1, q2) = r(q1) + g2m2(q1). 3

It is straightforward to see thats(g1) is normal toS whereg, = 0; the extension of this
to obtain a vector normal t§ for any ¢, proceeds as in [1], and we obtain

N(q1,q2) = h"H(—gq2Tt + Kng) (4)

1 1
Vett(q1, g2) ~ < - Z[K(ql)]z + 5[7(41) - 9/(611)]2) 2
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whereT'(q1) = t(q1) — 6'(q1) and K (g1, g2) = 1 — g2k (q1) 090 (q1)), and

h(q1, q2) = \ K2+ ¢3T2. (5)

This allows points neaf2 to be expressed aR(q1, g2, g3) = S(q1, q2) + g3N (g1, q2).

However, the argument in [1], taking the limit as — O, fails to account for the partial
derivatives with respect tgs. A more careful treatment of this limiting process yields the
corrected expression fdfez. We use the following, from [3].

Proposition (Straightening-out transformation)Suppose the metric tensoG, with
componentg;; and determinang, is invertible. Let the components &~ be denoted by
¢" in the standard manner. Then with the substitutjor= g~'/%y, the Laplace—Beltrami
operatorV? acting onys can be expressed as

Vi = Y4V + Kox + Vox) (6)
where
Kox = (g" — 8")aijx + (3;x)(3:") @)
and
Uox = —3lg "9 (g7 ¢ ¥*9;9)]x. (8)
O

We construct the metric tens@ in question. The partial derivatives & with respect
to q1, g2 andgs are given by

R = 018 + g3 N

R = 028 + g30oN

3R = N. 9)
The metric tensor will, therefore, depend upon the partial derivatively aind S, which
we express in terms of the basis vectérsi, andng, obtaining

N = h™ Tny, — [h Yk sind — h 3¢ M][Kt + g2Tns)

HN = —h 3T (Kt + g2Tng)

018 = Kt + g.Tns

028 = n, (10)
whereM = T9,K — Kd9:T. These partial derivatives are easily expressed in terms of an
orthonormal triad of vectorsni, m, andma:

my = h Kt + ¢2Tn3)

m2 =n2

ma = h"—q2Tt + Kna). (11)
This allows (4) and (10) to be more conveniently expressed as

N =mg3 N =hTm,— Emy

#N = —h"*Tm, 3S = hmy

928 =my (12)

where
E =k sSing —h 2g:M. (13)
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We then construct the metric tens@r by expanding the differential & in terms of dy,
dgo and dy3, yielding the following expressions for the component<of

g11 = h®+ 2¢3([015] - [01N]) + g5[0.N||?

822 = 1+ 2q3([925] - [2N]) + 43118 N |I”

gz=1

12 = g21 = qa(([315] - [02N]) + ([325] - [02N1)) + g5 ([91N] - [32N])

g13 = 831 = q3([01IN] - N)

823 = g32 = q3([02IN] - N). (14)
We investigate the terms in (14) which are made up of scalar produché,dahe partial
derivatives of NV and the partial derivatives . With E as in (13), we have

([0.N]-N) =0 ([02N]-N)=0

([8:5] - [0:N]) = —hE 10.N||? = h=?T? + B2

([025] - [9:N]) =0 [0 N|* = h*T?

([018] - [02N]) = —h°T ([328] - [0.N]) = h~'T

([0.N]- [32N]) = —h °TE. (15)

This leads to the desired metric tensor
gun g2 0 (h—E3)?+2n72T (W1—h3T3; 0
G= |:821 822 0:| = |: (™= h3T; 1+ h=412 0:| (16)
0O 0 1 0 0 1

where we use the dimensionless varialigsand E3 obtained by scaling” and E by g3,
that is, T3 = g3T and E3 = g32.
The determinant o6 is given byg = g11g20 — gfz, which we express as

g =h72[(h* — h T35 %) (h — B3)® + h T3 2(1 — h*T; 9)]. (17)
This gives the invers&—1! of G,
gt g% 0 822/8 —g12/¢ O
G*'= |:821 g% 0:| = |:—812/g g11/8 0:| : (18)
0 0 1 0 0 1

We now are ready to apply the ‘straightening-out’ transformation. Because the Hamiltonian
is given by multiplyingV? by —#?/(2m*), the effective potential is given by

—h?
21’)1*
We now go back to (8), and with (14) and (17) we obtain

Vett(q1, 2, g3) X = Uox. (19)

h? 2 . 3
Verl(q1, 42, 93) = g— [g‘l/“ Y dig g o) + [R5 S - —f‘z[asf]z] (20)
m 52 4
Note thatVes also depends ogs. It is now that we take the limit ags — 0, since we have
been careful to include the extra terms dependingfnand dsg terms. We puigg = h?,
obtaining

R
Vert(q1, q2) =

el 0
- [h‘1/28—m<h—7/281g9) S (7 0aga) — h—ZEZ}. (21)
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It is easier to evaluate the partial derivativesgef than of . Hence, we express (21) in
terms ofgq, obtaining

h?
Vo =

B 7 _ 3 _ 1o
& [89231289 -~ Zgg3[31gsz]2 + 850380 — Zggz[azgsz]z — ggldz:|~ (22)

Note that (22) is a corrected version of the effective potential result given in equation (24)
of [1]; the E-dependent term was inadvertently neglected in [1].

Supposel is small compared with a length over which curvature and torsion vary in
the longitudinal direction. The same dimensionless variablesnd y in equation (44) in
[1] are used, i.eq; = xL andg, = yd. Henceforth, the variables, M and E are taken to
be functions ofx andy, the correspondence being made in the natural manner. We find it
easier to transfornE (g1, ¢2) into

E(x, y) = k(x)sinf + g5ley [fey% +(1- eyA)d—Ti| (23)
ox dx
where
. . de .
T(x)=1(x)— & and A(x) = k(x) cospp(x)]. (24)

This satisfieE = @/L. From the effective potentidles (g1, g2), we define a dimensionless
effective potential’(x, y):

Vert(q1, g2) = V(x, y) Eq. (25)
The expression fopg can then be expressed as
ga(x,y) = 1—2eyA(x) + €2y?B(x) (26)

where B(x) = A2(x) + T2(x). After some simple algebra, (22) becomes

h g 3 9ga ]’ iga 7 9ga ]’
Vv ’ _ "N |,-1982 9 2 98e 2 -2 2 3| 98
eff (41, 92) 8 d2 [gg ay2 282 [ oy ] +e o

—ezgélézil. (27)
From (25), we have

1 _,0%q 3 9ga ]’ 1 _,0%q 7 080’ 1 s
V(. y) = 780 05 — 1e8a’| e | T 7800 — e8| o | — 784 8-
(28)

2 9x2 46 Sa

Using (26) to expresg, as a quadratic, and collecting termseinwe have

Vix,y) = €)1B — 342 - 187 + O(d). (29)
We then ignore the higher-order termscirand use (23) to obtain the asymptotic expansion
to second order iR:

2
V(x, y) ~ ez[ - %[k(x)]z + %[f(x) - d";ix)} } (30)
or in terms ofg; andgs,
Valq1, q2) ~ : [— }[K(‘Il)]z + }[7(41) - 0’(611)]2]. (31)
2m* 4 2

This agrees with (2), concluding this work.

The author is grateful to P Exner for pointing out that (1) could not be correct as it stands,
and to Anthony J Bracken for all his help with the author’s PhD project.
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