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ADDENDUM

More on effective potentials of quantum strip waveguides

Iain J Clark†
Department of Mathematics and Statistics, The University of Edinburgh, James Clerk Maxwell
Building, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

Received 30 October 1997

Abstract. We investigate further the dynamics of a particle constrained to move on a curved
quantum strip waveguide embedded in 3-space, subject to Dirichlet boundary conditions. An
earlier calculation of the dependence of the effective potential upon torsion and twisting is
modified to yield a corrected expression, by use of the ‘straightening-out’ transformation.

In [1], an expression was derived for the effective potential of a quantum strip waveguide,
embedded with twisting and torsion in 3-space:

Veff(q1, q2) ≈ h̄2

2m∗

(
− 1

4
[κ(q1) cos[θ(q1)]]

2+ 1

2
[τ(q1)− θ ′(q1)]

2

)
(1)

where q2 is constrained to assume values either (c1) between 0 andd, or (c2) between
−d/2 andd/2. However, it was pointed out that (1) could not be correct as it stands: for
example, whenτ(q1) andθ ′(q1) vanish, one has different values ofVeff for waveguides with
different orientationsθ(q1) in the limit asd → 0. Physically, however, one would expect
these values ofVeff to coincide. It was subsequently found [2] that the correct expression
for (1) was given by

Veff(q1, q2) ≈ h̄2

2m∗

(
− 1

4
[κ(q1)]

2+ 1

2
[τ(q1)− θ ′(q1)]

2

)
. (2)

This addendum provides a derivation of this result.
Consider a strip� of uniform widthd embedded with torsion in 3-space. As in [1], we

define a right-handed orthonormal triad{t(q1),n(q1), b(q1)} of vectors along a reference
curve C = {r(q1) : q1 ∈ R}. We then take linear combinations ofn and b, the relative
proportions given at each point alongC by a scalar functionθ(q1), obtaining new vectors
n2(q1) andn3(q1). This allows the construction of a surfaceS containing�; the points in
the surfaceS are given by

S(q1, q2) = r(q1)+ q2n2(q1). (3)

It is straightforward to see thatn3(q1) is normal toS whereq2 = 0; the extension of this
to obtain a vector normal toS for any q2 proceeds as in [1], and we obtain

N (q1, q2) = h−1(−q2T t+Kn3) (4)
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whereT (q1) = τ(q1)− θ ′(q1) andK(q1, q2) = 1− q2κ(q1) cos(θ(q1)), and

h(q1, q2) =
√
K2+ q2

2T
2. (5)

This allows points near� to be expressed asR(q1, q2, q3) = S(q1, q2)+ q3N (q1, q2).
However, the argument in [1], taking the limit asq3→ 0, fails to account for the partial

derivatives with respect toq3. A more careful treatment of this limiting process yields the
corrected expression forVeff. We use the following, from [3].

Proposition (Straightening-out transformation).Suppose the metric tensorG, with
componentsgij and determinantg, is invertible. Let the components ofG−1 be denoted by
gij in the standard manner. Then with the substitutionψ = g−1/4χ, the Laplace–Beltrami
operator∇2 acting onψ can be expressed as

∇2ψ = f −1/4(∇2
0χ +K0χ + V0χ) (6)

where

K0χ = (gij − δij )∂ijχ + (∂jχ)(∂igij ) (7)

and

U0χ = − 1
4[g−1/4∂i(g

ij g−3/4∂jg)]χ. (8)

�

We construct the metric tensorG in question. The partial derivatives ofR with respect
to q1, q2 andq3 are given by

∂1R = ∂1S + q3∂1N

∂2R = ∂2S + q3∂2N

∂3R =N . (9)

The metric tensor will, therefore, depend upon the partial derivatives ofN andS, which
we express in terms of the basis vectorst, n2 andn3, obtaining

∂1N = h−1Tn2− [h−1κ sinθ − h−3q2M][Kt+ q2Tn3]

∂2N = −h−3T (Kt+ q2Tn3)

∂1S = Kt+ q2Tn3

∂2S = n2 (10)

whereM = T ∂1K − K∂1T . These partial derivatives are easily expressed in terms of an
orthonormal triad of vectorsm1, m2 andm3:

m1 = h−1[Kt+ q2Tn3]

m2 = n2

m3 = h−1[−q2T t+Kn3]. (11)

This allows (4) and (10) to be more conveniently expressed as

N =m3 ∂1N = h−1Tm2−4m1

∂2N = −h−2Tm1 ∂1S = hm1

∂2S =m2 (12)

where

4 = κ sinφ − h−2q2M. (13)
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We then construct the metric tensorG by expanding the differential dR in terms of dq1,
dq2 and dq3, yielding the following expressions for the components ofG:

g11 = h2+ 2q3([∂1S] · [∂1N ])+ q2
3‖∂1N‖2

g22 = 1+ 2q3([∂2S] · [∂2N ])+ q2
3‖∂2N‖2

g33 = 1

g12 = g21 = q3(([∂1S] · [∂2N ])+ ([∂2S] · [∂1N ]))+ q2
3([∂1N ] · [∂2N ])

g13 = g31 = q3([∂1N ] ·N )
g23 = g32 = q3([∂2N ] ·N ). (14)

We investigate the terms in (14) which are made up of scalar products ofN , the partial
derivatives ofN and the partial derivatives ofS. With 4 as in (13), we have

([∂1N ] ·N ) = 0 ([∂2N ] ·N ) = 0

([∂1S] · [∂1N ]) = −h4 ‖∂1N‖2 = h−2T 2+42

([∂2S] · [∂2N ]) = 0 ‖∂2N‖2 = h−4T 2

([∂1S] · [∂2N ]) = −h−3T ([∂2S] · [∂1N ]) = h−1T

([∂1N ] · [∂2N ]) = −h−2T4. (15)

This leads to the desired metric tensor

G =
 g11 g12 0

g21 g22 0

0 0 1

 =
 (h−43)

2+ 2h−2T 2
3 (h−1− h−3)T3 0

(h−1− h−3)T3 1+ h−4T 2
3 0

0 0 1

 (16)

where we use the dimensionless variablesT3 and43 obtained by scalingT and4 by q3,
that is,T3 = q3T and43 = q34.

The determinant ofG is given byg = g11g22− g2
12, which we express as

g = h−2[(h2− h−2T −2
3 )(h−43)

2+ h−2T −2
3 (1− h−2T −2

3 )]. (17)

This gives the inverseG−1 of G,

G−1 =
 g11 g12 0

g21 g22 0

0 0 1

 =
 g22/g −g12/g 0

−g12/g g11/g 0

0 0 1

 . (18)

We now are ready to apply the ‘straightening-out’ transformation. Because the Hamiltonian
is given by multiplying∇2 by −h̄2/(2m∗), the effective potential is given by

Veff(q1, q2, q3)χ = −h̄
2

2m∗
U0χ. (19)

We now go back to (8), and with (14) and (17) we obtain

Veff(q1, q2, q3) = h̄2

8m∗

[
g−1/4

2∑
i,j=1

∂i(g
−3/4gij ∂jg)+ f −1∂2

3f −
3

4
f −2[∂3f ]2

]
. (20)

Note thatVeff also depends onq3. It is now that we take the limit asq3→ 0, since we have
been careful to include the extra terms depending on∂2

3g and∂3g terms. We putg� = h2,
obtaining

Veff(q1, q2) = h̄2

8m∗

[
h−1/2 ∂

∂q1
(h−7/2∂1g�)+ h−1/2 ∂

∂q2
(h−3/2∂2g�)− h−242

]
. (21)
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It is easier to evaluate the partial derivatives ofg� than ofh. Hence, we express (21) in
terms ofg�, obtaining

V� = h̄2

8m∗

[
g−2
� ∂

2
1g� −

7

4
g−3
� [∂1g�]2+ g−1

� ∂
2
2g� −

3

4
g−2
� [∂2g�]2− g−1

� 4
2

]
. (22)

Note that (22) is a corrected version of the effective potential result given in equation (24)
of [1]; the4-dependent term was inadvertently neglected in [1].

Supposed is small compared with a lengthL over which curvature and torsion vary in
the longitudinal direction. The same dimensionless variablesx and y in equation (44) in
[1] are used, i.e.q1 = xL andq2 = yd. Henceforth, the variablesθ , M and4 are taken to
be functions ofx andy, the correspondence being made in the natural manner. We find it
easier to transform4(q1, q2) into

4̂(x, y) = κ̂(x) sinθ + g−1
� εy

[
T̂ εy

∂A

∂x
+ (1− εyA)dT̂

dx

]
(23)

where

T̂ (x) = τ̂ (x)− dφ

dx
and A(x) = κ̂(x) cos[φ(x)]. (24)

This satisfies4 = 4̂/L. From the effective potentialVeff(q1, q2), we define a dimensionless
effective potentialV(x, y):

Veff(q1, q2) = V(x, y)Ed. (25)

The expression forg� can then be expressed as

g�(x, y) = 1− 2εyA(x)+ ε2y2B(x) (26)

whereB(x) = A2(x)+ T̂ 2(x). After some simple algebra, (22) becomes

Veff(q1, q2) = h̄2

8m∗d2

[
g−1
�

∂2g�

∂y2
− 3

4
g−2
�

[
∂g�

∂y

]2

+ ε2g−2
�

∂2g�

∂x2
− 7

4
ε2g−3

�

[
∂g�

∂x

]2

−ε2g−1
� 4̂

2

]
. (27)

From (25), we have

V(x, y) = 1

4
g−1
�

∂2g�

∂y2
− 3

16
g−2
�

[
∂g�

∂y

]2

+ ε2

[
1

4
g−2
�

∂2g�

∂x2
− 7

16
g−3
�

[
∂g�

∂x

]2

− 1

4
g−1
� 4̂

2

]
.

(28)

Using (26) to expressg� as a quadratic, and collecting terms inε, we have

V(x, y) = ε2[ 1
2B − 3

4A
2− 1

44̂
2] +O(ε3). (29)

We then ignore the higher-order terms inε and use (23) to obtain the asymptotic expansion
to second order inε:

V(x, y) ≈ ε2

[
− 1

4
[κ̂(x)]2+ 1

2

[
τ̂ (x)− dφ(x)

dx

]2]
(30)

or in terms ofq1 andq2,

V�(q1, q2) ≈ h̄2

2m∗

[
− 1

4
[κ(q1)]

2+ 1

2
[τ(q1)− θ ′(q1)]

2

]
. (31)

This agrees with (2), concluding this work.

The author is grateful to P Exner for pointing out that (1) could not be correct as it stands,
and to Anthony J Bracken for all his help with the author’s PhD project.
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